

Robin Riedel Partner McKinsey & Company

Anders Forslund CEO & Chairman Heart Aerospace

Greg Davis President & CEO Eviation

revolution

Jonathan Evans CEO & Co-Founder KinectAir

Dennis Scott Supply Chain Director ARC Aerosystems

James Dorris Co-Founder & CEO Odys Aviation

Is Regional Aviation still underrated

McKinsey & Company

Regional Air Mobility

September 2023

What is Regional Air Mobility?

Air transport of passengers & cargo

including CTOL, STOL, and eVTOL

5-50 passengers

Carried in smaller passenger aircraft

~150-800 kilometers

Leveraged in smaller regional airports and regional flights

Enabled by modern technologies

Such as green propulsion, digitization, and autonomy

The time for Regional Air Mobility is now...

Advancement in electric propulsion, batteries, AI & other systems

Serious concern over increasing share of emissions from transport Ground infrastructure has not kept up with traffic growth

Worldwide acceptance of mobility as a service

3x

Battery energy density improvement over the last 10 years

80%

Of the top 25 airlines globally set emissions reduction targets

200+

major airports worldwide, handling 43% of passengers, are capacity constrained and routinely ~\$125B

Global market for e-hailing, and has the 3rd largest total vehicle size compared to other forms of transport

Regional air mobility use cases

Illustrative examples in California

New point-to-point flight networks utilizing smaller airports

Short feeder flights to major airports

Electric conventional takeoff and landing (eCTOL) on existing commercial routes

What needs to happen to unlock this market?

Seamless endto-end customer experience

Simple booking process

Airport proximity

Frequency

First / last-mile integration

Continuous technological advancement

New propulsion and energy storage

Lighter materials

Advanced simulation/ Al-enabled design

ATM and UTM

Increased public acceptance

Acceptance of autonomy/ semi-autonomy

Neighbours accept more flights at small airports

Reduced noise footprint

Airport & energy infrastructure

Hydrogen and electric charging infrastructure

Green electricity

Green hydrogen fuels

Regulatory

Certification of new technologies

Certification of autonomous ops

While advanced air mobility can save customers time, leaders will need to solve several 'hassle factors' that favor journeys by car

Illustrative comparing 200-mile journey by car vs. AAM

	6	Regional Air Mobili
	Car	
Trip time		
Moderate times savings of 1-2 hours with RAM		
Price	6	
Significantly lower average cost per mile for car		
Schedule flexibility		
Can leave by car at any time, although traffic could be constraint		
Planning complexity		
Single mode reduces complexity for cars, although required to account for construction and traffic		
Reliability		
Lower system complexity for automotive drives fewer cancellations		
Predictability		
Higher risk of traffic and mid-trip delays in car		
Mode changes		
No mode changes when driving		

^{1.} Per passenger based on a 500-mile average stage length.